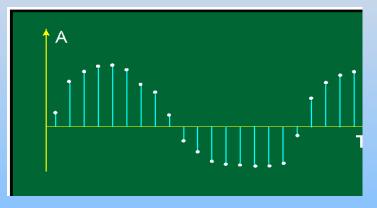
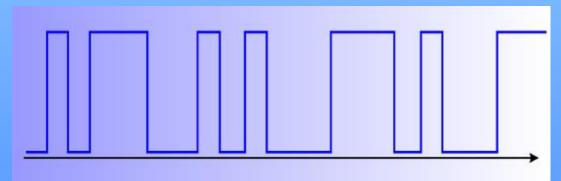
Универсальность дискретного представления информации

Двоичное кодирование


Универсальность цифрового представления информации

Для передачи информации используется физический процесс, который может быть описан математической формулой и называется сигналом.


Именно сигналы различают по способу их представления как аналоговые и дискретные.

Аналоговый и дискретный способы представления информации

При аналоговом представлении информации величины могут принимать бесконечное множество значений.

При *дискретном* представлении информации величина может принимать конечное множество значений, при этом она изменяется скачкообразно.

Двоичное представление информации

Алфавит: 01

Количество символов: N=2

Информационный вес символа:

$$i = 1 (6um)$$

Каждая буква алфавита (01) несет один бит информации.

Задача:

Некоторое число в двоичной системе счисления записывается как 1001010. Определите это число и запишите его в ответе в десятичной системе счисления.

Решение:

Воспользовавшись правилом развёрнутой записи чисел, переведём двоичное число в его десятичное представление:

$$1001010_2^{-1}^{2} - 1^{2} + 0^{2} + 0^{2} + 1^{2} +$$

2. Некоторое число в двоичной системе счисления записывается как 10111. Определите это число и запишите его в ответе в десятичной системе счисления.

Ответ: 23

3. Некоторое число в двоичной системе счисления записывается как 111010. Определите это число и запишите его в ответе в десятичной системе счисления.

3. Некоторое число в восьмеричной системе счисления записывается как 53_8 . Определите это число в десятичной системе счисления и запишите его в ответе.

Omeem: 43

4. Некоторое число в восьмеричной системе счисления записывается как 37₈. Определите это число и запишите его в ответе в десятичной системе счисления.

5. Дано A = 325₈, B = D7₁₆. Укажите число C, записанное в двоичной системе счисления, которое отвечает условию A<C<B.

Ответ: 11010110

6. Даны 4 целых числа, записанных в шестнадцатеричной системе счисления В5, 9F, AC, C1. Сколько среди них целых чисел, которые меньше чем 265₈?

Универсальность цифрового представления информации

Какого вида информация может быть представлена в виде двоичного кода?

- •текст
- •графика
- •звук
- •видео

Текстовая информация

Для обработки текстовой информации на компьютере необходимо представить её в двоичной знаковой системе.

Unicode — это «уникальный код для любого символа, независимо от платформы, независимо от программы, независимо от языка».

Информационный объем сообщения

Информационный объём сообщения - количество бит (байт, килобайт, мегабайт и т. д.), необходимых для записи этого сообщения.

- і информационный вес символа
- **N** мощность алфавита (количество символов в алфавите)
- **К** количество символов в сообщении
- I информационный объём сообщения

$$N = 2^i$$
 $I = K \times i$

Задача:

Каков информационный объем сообщения

Я помню чудное мгновенье.

при условии что слова разделяются 1 пробелом, а информационный вес символа равен 8 бит (алфавит клавиатуры)?

Решение:

$$I = K x i;$$
 где $i = 8 \delta um = 1 \delta a um$ (б) $K = 25;$ $I = 25 x 1 6 = 25 6.$ Ответ: $I = 25 \delta.$

1. Для передачи сообщения использовалась кодировка Unicode (N = 65536). Сообщение заняло 10 страниц, на каждой из которых 64 строки по 32 символа. Каков информационный объём сообщения? Ответ дать в килобайтах.

Ответ: 40

2. Количество информации в сообщении, содержащем 2048 символов, составляет 1/512 часть мегабайта. Какова мощность алфавита, с помощью которого записано сообщение?

Дискретное представление графической информации

Изображение на экране монитора дискретно. Оно составляется из отдельных точек – пикселей.

Пиксель – минимальный участок изображения, которому независимым образом можно задать цвет.

В процессе дискретизации могут использоваться разные палитры.

Палитра (*N*) – количество цветов, которые могут быть использованы для воспроизведения изображения.

Глубина цвета (i) — количество бит, используемое для представления цвета при кодировании одного пикселя.

$$N = 2^i$$
 $I = K \times i$

Задача 1:

Определить количество цветов в 24-битовой палитре.

Решение:

$$N = 2^i$$
 $N = 2^{24} = 16777216$

Задача 2:

Ответ: 16777216 цветов

Какой объём на диске (в Мбайтах) будет занимать 16цветное изображение размером 2048х1024 пикселей?

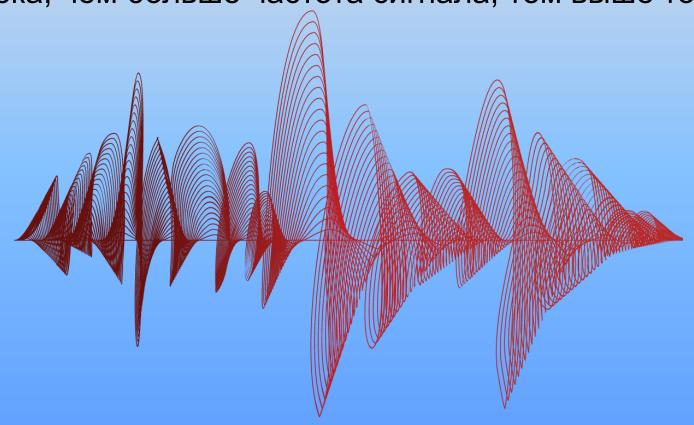
Решение: $I = K \times i$ $N = 2^i$

 $N = 2^i$; $16 = 2^4$; i = 4.

I = K x i = 2048 x 1024 x 4 = 21 x 210 x 210 x 22 = 223 бит = 1 Мб

Ответ: 1 Мб

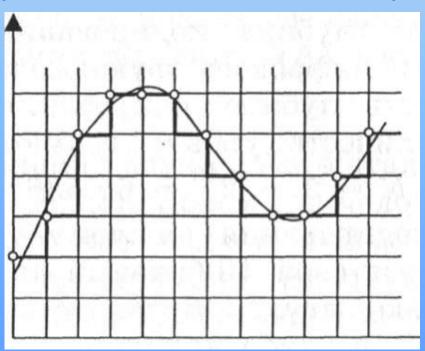
1. Какой объём памяти (в Кбайтах) нужен для сохранения растрового изображения размером 64х256 пикселей при условии, что в изображении используется 4 цвета.


Ответ: 4 Кб

2. Скольких различных цветов могут быть пиксели растрового изображения, имеющего размер 1024х256 пикселей и занимающего на диске 160 килобайт?

Дискретное представление звуковой информации

Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой и частотой.


Чем больше амплитуда сигнала, тем он громче для человека, чем больше частота сигнала, тем выше тон.

Дискретное представление звуковой информации

Звуковая плата преобразует звук при входе в цифровую информацию путем измерения характеристики звука (период, амплитуда) несколько тысяч раз в секунду.

Качество двоичного кодирования звука определяется глубиной кодирования и частотой дискретизации.

Дискретное представление звуковой информации

Частота дискретизации (*f*) – количество измерений уровня сигнала в единицу времени.

Частота дискретизации измеряется в герцах ($\Gamma \mu$) и килогерцах ($\kappa \Gamma \mu$).

1 кГц = 1000 Гц. Частота дискретизации, равная 100 Гц означает, что за одну секунду проводилось 100 измерений громкости звука.

Глубина кодирования или разрешение (i) - число разрядов, используемое для создания цифрового звука, -

Информационный объем звукозаписи

Размер цифрового аудиофайла (I) измеряется по формуле:

$$I = K \times f \times i \times t$$

I – размер файла (в битах)

K - количество каналов записи (1 — моно, 2 — стерео)

- f частота дискретизации (в герцах)
- *i* разрешение, т.е. число бит, используемых для хранения каждого измеренного значения;
- t продолжительность звукового фрагмента (в секундах).

Задача:

Определить размер (в байтах) цифрового моноаудиофайла, время звучания которого составляет 10 секунд при частоте дискретизации 22,05 кГц и разрешении 8 бит.

Решение:

$$I = K \times f \times i \times t$$

$$I = 1 \times 22050 \times 8 \times 10 = 1764000$$
 бит = 220500 байт

Ответ: 220500 байт

1. Определите информационный объём стереоаудиофайла длительностью звучания 1 минута, если глубина кодирования 16 бит, а частота дискретизации 48 кГц.

Ответ: ≈ 11 Мб

2. Определить объем памяти для хранения цифрового моноаудиофайла, время звучания которого составляет две минуты при частоте дискретизации 44,1 кГц и разрешении 16 бит.

Ответ: ≈ 10 Мб

Источники информации

- 1. Угринович Н.Д. Информатика и ИКТ. Учебное пособие для 10-11 классов / Н.Д.Угринович.. – М.: Лаборатория Базовых Знаний, 2001.
- 2. Угринович Н.Д. Информатика и ИКТ. Базовый уровень : учебник для 10 класса / Н.Д.Угринович. М.: БИНОМ. Лаборатория знаний, 2013.
- 3. http://zoozel.ru/gallery/images/1034583_analogovyi-signal.jpg аналоговый сигнал
- 4. https://pakhomov-school.ru/assets/images/articles/Postolovsky/Digital_analog.jpg цифровой сигнал
- 5. https://i.ytimg.com/vi/oreHcmcX1WQ/maxresdefault.jpg логотип Windows
- 6. https://f1comp.ru/wp-content/uploads/2012/11/54644x.jpg логотип Linux
- 7. https://d3pl14o4ufnhvd.cloudfront.net/v2/uploads/888ce99f-d82f-4581-a669-07b7d6c9f7f3/ddba7f583be0b80a86cb37bc96c30421988bf038_original.png-звуковая волна
- 8. http://izlov.ru/tw_files2/urls_1/21/d-20600/20600_html_mb4254ab.png временная дискретизация звука