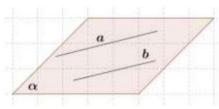
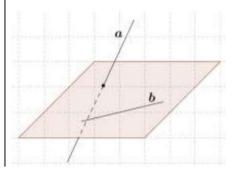

Стереометрия

Скрещивающиеся прямые

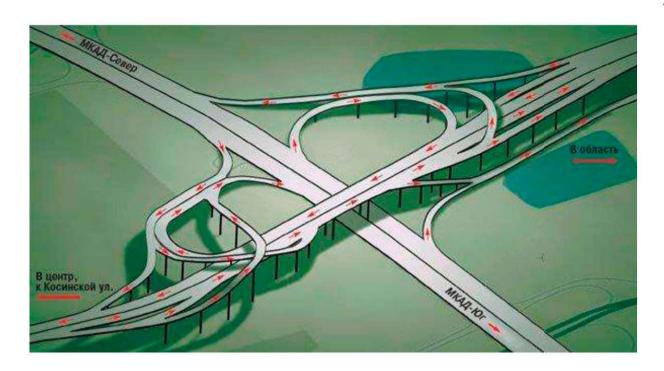
√ Возможные случаи расположения двух прямых в пространстве:


а) прямые *пересекаются*, имеют одну общую точку и задают плоскость

$$a \cap b \Rightarrow \exists \alpha$$

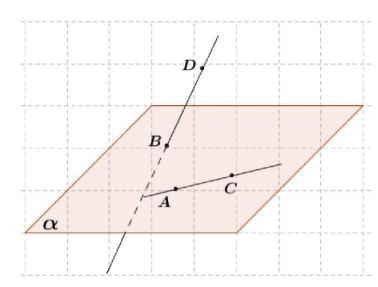

б) прямые *параллельны*, т.е. не имеют общих точек и лежат в одной плоскости

$$a \parallel b \Rightarrow \exists \alpha$$


в) прямые *скрещиваются*, т.е. не лежат в одной плоскости

$$a \cdot b \Rightarrow \not\exists \alpha$$

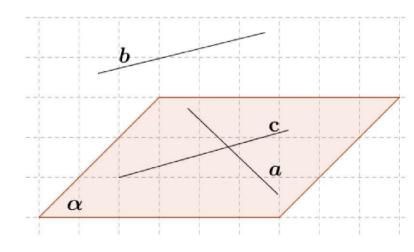
✓ Две прямые называются **скрещивающимися**, если они не лежат в одной плоскости



✓ Признак скрещивающихся прямых

Если одна из двух прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся.

$$\begin{vmatrix} a \in \alpha \\ b \cap \alpha = B \\ B \notin a \end{vmatrix} \Rightarrow a \cdot b$$



Дано: $AC \in \alpha$, $BD \cap \alpha = B$, $B \notin a$. Доказать: AC = BD. Доказательство:

Предположим, что АС и ВD лежат в одной плоскости β . Тогда точки A, B и C принадлежат как плоскости α , так и плоскости β , значит они совпадают, но это невозможно, т.к. BD не лежит в плоскости α . Получили противоречие, значит, прямые АС и BD не лежат в одной плоскости, тогда по определению они скрещивающиеся прямые.

√ Теорема о скрещивающихся прямых

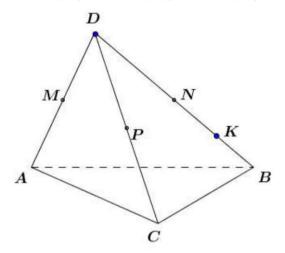
Через каждую из двух скрещивающихся прямых проходит плоскость, параллельная другой прямой, и притом только одна.

Дано: $a \cdot b$

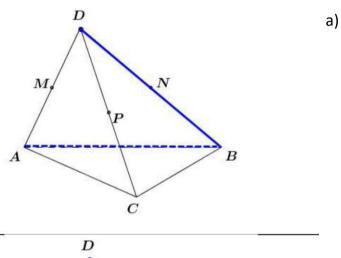
Доказать: $\exists \alpha$ такая, что $a \in \alpha$ и $b \parallel \alpha$

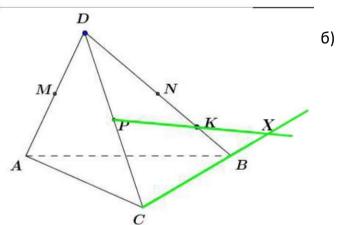
Док-во:

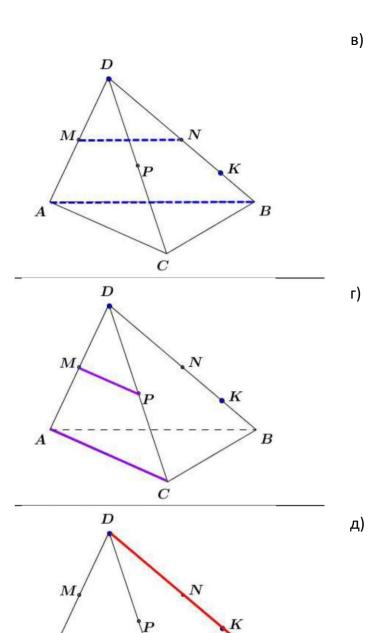
Проведем $c \parallel b$ и $c \cap a \Rightarrow \exists \alpha$

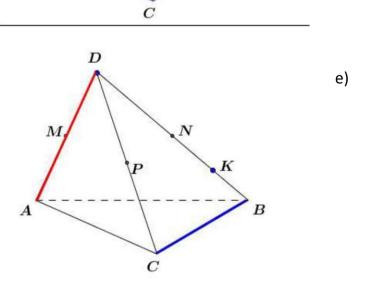

единственная.

По признаку параллельности прямой и плоскости

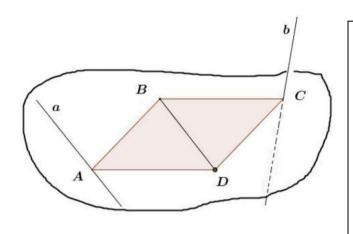

$$\begin{vmatrix} b \notin \alpha \\ b \parallel c \\ c \in \alpha \end{vmatrix} \Rightarrow b \parallel \alpha .$$


Точка D не лежит в плоскости треугольника ABC, точки M, N и P - середины отрезков DA, DB и DC соответственно, точка К лежит на отрезке BN. Выясните взаимное расположение прямых:


a) ND u AB; 6) PK u BC; e) MN u AB; e) MP u AC; e) KN u AC; e) MD u BC.



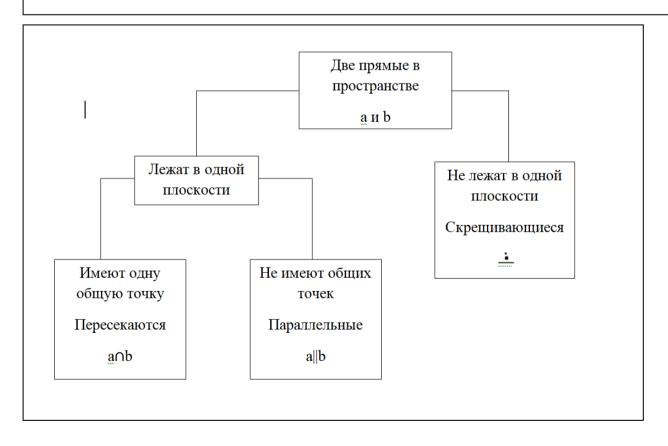
Решение:



Задача №2

Через вершину А ромба АВСО проведена прямая а, параллельная диагонали ВD, а через вершину С - прямая b, не лежащая в плоскости ромба. Докажите, что: а) прямые а и CD пересекаются; б) а и b скрещивающиеся прямые.

Дано: ABCD - ромб, $a \subset ABC$, $A \in a$, $BD \parallel a$, $b \cap ABC = C$. Доказать:


а) $a \cap CD$; б) $a \cdot b$. Доказательство:

а) Прямые a и CD принадлежат плоскости ромба и в этой плоскости $a \parallel BD \Rightarrow a \cap CD$.

Б) Из признака скрещивающихся прямых $a \in ABC \Rightarrow a \cdot b$.

Схема расположения прямых в пространстве

C∉a

