Практическая работа

Тема: Логарифмы в природе и технике

Цель: научиться применять логарифм при вычислении пропускной способности канала передачи данных.

Практическая работа проводится на практическом занятии.

При выполнении заданий практической работы необходимо подробно описать ход решения заданий и дать ответ.

Критерии оценки:

Оценка	Выполнены	Критерии оценки		
_	задания			
5	3 задания	задания выполнены в полном объеме;		
(отлично)		приведены соответствующие формулы;		
		отсутствуют замечания по оформлению и обоснованию		
		решения заданий;		
		- вычисления выполнены без ошибок;		
		решение заданий записано аккуратно		
4	2 задания	приведены соответствующие формулы;		
(хорошо)		- отсутствуют замечания по оформлению и обоснованию		
		решения заданий;		
		- вычисления выполнены без ошибок;		
		- решение заданий записано аккуратно		
3	1 задание	имеются несущественные замечания по оформлению и		
(удовлетворите		обоснованию решения заданий;		
льно)		решение заданий записано неаккуратно		
2	менее	имеются существенные замечания по оформлению и		
(неудовлетвор	1 задания	обоснованию решения заданий;		
ительно)		решение заданий записано неаккуратно		

Теоретические сведения

Любой *реальный* канал связи подвержен внешним воздействиям, а также в нем могут происходить внутренние процессы, в результате которых искажаются передаваемые сигналы и, следовательно, связанное с ними сообщение. Такие воздействия называются *шумами* (помехами).

После прохождения сообщения по каналу связи сигналы с помощью приемного преобразователя переводятся в последовательность кодов, которые декодирующим устройством представляются в форме, необходимой приемнику информации. На этапе приема, как и при передаче, преобразователь может быть совмещен с декодирующим устройством (например, радиоприемник или телевизор) или существовать самостоятельно (например, модем).

Характеристиками любой линии связи являются:

- скорость передачи данных (V),
- пропускная способность канала (С)
- степень искажения сообщения в процессе передачи (ε>0).

Заметим, что максимальная скорость передачи данных равна пропускной способности канала, т. е.

$$V_{max} = C$$
 (1)

Вторая теорема Шеннона: При передаче информации по каналу с шумом всегда имеется способ кодирования, при котором сообщение будет передаваться со сколь угодно высокой достоверностью, если скорость передачи не превышает пропускной способности

канала.

Из теоремы следует, что в любых случаях при превышении скорости передачи пропускной способности канала возможна потеря информации.

Смысл данной теоремы в том, что при передаче по реальным каналам можно закодировать сообщение таким образом, что действие шумов не приведет к потере информации. Это достигается за счет повышения избыточности кода (т.е. увеличения длины кодовой цепочки); безусловно, возрастает время передачи, что следует считать платой за надежность.

Для расчета пропускной способности канала передачи данных с шумами используется формула Шеннона-Хартли:

$$C=B \cdot \log_2 \left(1 + \frac{s}{N}\right)$$

C – пропускная способность канала, бит/с

B — ширина полосы пропускания канала, Γ ц

S – мощность сигнала, Bт

N – мощность шума, **В**т

Интервал частот, используемый данным каналом связи для передачи сигналов, называется **шириной полосы пропускания** (B).

Влияние шумов определяется соотношением мощности сигнала и мощности помех. Из этого соотношения, в частности, видно, что для увеличения пропускной способности канала связи необходимо увеличивать полосу пропускания, либо улучшать отношение мощности сигнала к мощности помех.

Для сравнения мощностей сигналов, передаваемых по системе связи, часто пользуются логарифмическими единицами – децибелами (дБ).

Децибел составляет 1/10 более крупной единицы, названной в честь А. Г. Белла – изобретателя телефона.

Бел (Б) – это десятичный логарифм отношения двух мощностей:

Для практики бел (Б) слишком крупная единица и при расчетах пользуются децибелами (дБ):

1 дБ =
$$10 \cdot 1 g \frac{S}{N}$$
 (3)

Отношение сигнал/шум S/N часто задаётся в децибелах (дБ).

Приведем характеристики некоторых каналов связи:

Вид связи	В, Гц	$\frac{S}{N}$	С, бит/с
Телеграф	120	≈2 ⁶	640
Телефон	3-10 ³	=217	5·10 ⁴
Телевидение	7·10 ⁶	≈2 ¹⁷	130·10 ⁶
Компьютерная сеть		11.0	до 10 ⁹
Слух человека	20·10 ³	Est a	5-10 ⁴
Глаза человека	aryen -	C - 31.9 70-	5-10

Задания практической работы

Задание 1 Определите пропускную способность некоторого канала связи в зависимости от ширины полосы пропускания и отношения сигнал/шум.

Например

Задача: определить пропускную способность канала связи с полосой пропускания 1 МГц и отношением сигнал/шум 30 дБ.

Решение:

Так как в условии задано отношение сигнал/шум, а не отношение мощностей (SNP), необходимо использовать соотношение между ними: $S/N = 10 \lg SNP$, $30 = 10 \lg SNP$, откуда SNP = 1000.

Ответ: пропускная способность канала — $C = 1000000 \times log_2(1000 + 1)$ бит/с.

Данные для расчетов представлены в таблице1(по вариантам, с 11го номера идет отсчет с 1го варианта, с 21го номера также идет отсчет с 1го варианта)

Порядок выполнения задания:

- 1) Найдите пропускную способность канала С(по вариантам), В=В2-В1(обратите внимание на единицы измерения)
- 2) Определите, каким должно быть отношение сигнал/шум в децибелах, для того, чтобы пропускная способность канала составила 50% от вычисленного значения в пункте 1.

1 aom	Таолица Т – Исходные данные					
Номер	Границы пол	S _r				
варианта	В 1 (нижняя граница)	В2 (верхняя граница)	$\frac{3}{N}$, дБ			
1	9,4 кГц	32,8 кГц	38			
2	2,5 МГц	37,7 МГц	31			
3	0,6 кГц	37,5 кГц	40			
4	9,8 МГц	22,1 МГц	35			
5	9,1 кГц	24,1 кГц	33			
6	3,5 МГц	24,7 МГц	38			
7	3,3 кГц	38,5 кГц	39			
8	8,2 МГц	21,8 МГц	36			
9	7,6 кГц	39,9 кГц	35			
10	1,9 МГц	22,5 МГц	39			

Таблица 1 – Исходные данные

Задание 2 Какова максимальная скорость передачи данных при передаче двоичного сигнала по каналу с полосой пропускания 2 кГц и шумом 10 дБ?

Задание 3 Какое требуется отношение сигнал/шум для достижения в канале пропускной способности 10 Мбит/сек при ширине полосы 2 МГц?

Дополнительное задание

Задание 4 Оцифрованное телевизионное изображение имеет матрицу 480х640 пикселов, причем цвет каждого пиксела кодируется 16 битами.

Телевизионное изображение передается по каналу с шириной полосы 3,5 МГц и отношением сигнал/шум, равным 35 дБ.

Найдите пропускную способность канала.