Памятка для решения логарифмических уравнений

При решении логарифмических уравнений полезно помнить некоторые свойства логарифмов:

$$a^{\log_a b} = b \text{ - основное логарифмическое тождество} \\ log_a 1 = 0 \ ; \qquad log_a a = 1 \ ; \\ log_a (xy) = log_a x + log_a y \ ; \qquad log_a \frac{x}{y} = log_a x - log_a y \ ; \\ log_a x^n = n \cdot log_a x \ ; \qquad log_a \sqrt[n]{x} = \frac{log_a x}{n} \ ; \\ log_{a^n} b = \frac{1}{n} log_a b \ ; \qquad log_a b = \frac{1}{log_b a} \ ; \\ log_a b = \frac{log_c b}{log_a a} \text{ - формула перехода к новому основанию}$$

Замечание: *lg t* – десятичный логарифм (по основанию 10)

lnt – натуральный логарифм (по основанию e)

Nº	МЕТОДЫ РЕШЕНИЯ	ПРИМЕРЫ
1.	По определению логарифма Уравнения вида $\log_a f(x) = b$, $f(x) > 0$ выражение, содержащее неизвестное число, а число $a > 0$, $a \ne 1$. Для решения таких уравнений надо: 1) воспользоваться определением логарифма: $f(x) = a^b$; 2) сделать проверку или найти область допустимых значений для неизвестного числа и отобрать соответствующие им корни (решения). Если $\log_a f(x) = b$, то $f(x) = a^b$, $a > 0$, $a \ne 1$.	Решить уравнение $log_2(x-15)=4$. $x-15=2^4$, $x-15=16$, $x=15+16$, $x=31$.
2.	Потенцирование Уравнения первой степени относительно погарифма, при решении которых используются свойства погарифмов. Для решения таких уравнений надо: 1) используя свойства погарифмов, преобразовать уравнение; 2) решить полученное уравнение; 3) сделать проверку или найти область допустимых значений для неизвестного числа и отобрать соответствующие им корни (решения). 1 1 2 2 3 4 4 5 2 2 3 4 4 5 3 4 5 4 5 4 5 4 5 6 6 5 6 5 6 6 5 6 6	$\log_{5}(4x+17) = \log_{5}(4x-3)+1$; $\log_{5}(4x+17) = \log_{5}(4x-3)$; 4x+17=5(4x-3); ОДЗ: $(4x+17)>0$, $(4x-3)>0$. Ответ: 2. $\log_{2}(x-1) - \log_{2}(2x-7) = 1 + \log_{\frac{1}{2}}(x-4)$; $\log_{2}(x-1) = \log_{2}(2x-7) + \log_{2}2 - \log_{2}(x-4)$; $\log_{2}(x-1) + \log_{2}(x-4) = \log_{2}((2x-7)\cdot 2)$; $\log_{2}((x-1)\cdot(x-4)) = \log_{2}((2x-7)\cdot 2)$; ОДЗ: $x-1>0$; $x-4>0$; $(2x-7)>0$. Ответ: 6.

3.	Введение новой переменной	$\log_3^2 x^3 - \log_3 x^2 - 7 = 0;$ ОДЗ: $x > 0;$
	Уравнение второй и выше степени относительно логарифма.	9 log ₃ ² x- 2 log ₃ x - 7 = 0. Введем обозначение t = log ₃ x. 9t ² - 2t - 7 = 0;
	Для решения таких уравнений надо: 1. сделать замену переменной;	$t_1 = 1, t_2 = -\frac{7}{9}$
	 сделать замену переменной, решить полученное уравнение; сделать обратную замену; решить полученное уравнение; сделать проверку или найти область допустимых значений для неизвестного числа и отобрать соответствующие им корни (решения). 	Произведем обратную замену. $\log_3 x = 1, \ x = 3.$ $\log_3 x = -\frac{7}{9}, \ x = 3$ $-\frac{7}{9}$ Найденные корни принадлежат ОДЗ. Ответ: 3; $3^{-\frac{7}{9}}$
4.	Логарифмирование обеих частей	Решить уравнение $(x^{lgx-1}) = 100$.
	уравнения, содержащие неизвестное в основании и в показателе степени. Для решения таких уравнений надо: 1. прологарифмировать уравнение; 2. решить полученное уравнение; 3. сделать проверку или найти область допустимых значений для неизвестного числа и отобрать соответствующие им корни (решения).	Поскольку нет возможности выразить обе части уравнения через степени с одинаковым основанием, то логарифмируем по основанию 10 (в уравнении есть десятичный логарифм, да и для числа 100 это основание удобно). Логарифмы равных положительных чисел (фактически одного и того же числа, выраженного по-разному) равны, поэтому логарифм левой части равен логарифму правой части: $lg(x^{lgx-1}) = lg100$, $(lgx-1)lgx=2, lg^2x-lgx-2=0$, $lgx=-1, lgx=2$. $x=0, l$
5.	Приведение к одному основанию	Решите уравнение: $log_3x - 2log_{\frac{1}{3}}x = 6$.
		Решение: ОДЗ: $x>0$. Перейдем к основанию 3. $\log_3 x + 2\log_3 x = 6$, или $3\log_3 x = 6$; $\log_3 x = 2$, $x = 9$. Ответ: 9.
6.	Функционально-графический метод	Решить графически уравнение: $\log_2 x = 3 - x.$ Можно построить графики функций $y = \log_2 x \ \text{и} \ y = 3 - x.$
		Есть способ, позволяющий не строить графики. Он заключается в следующем: если одна из

1
функций $y = f(x)$ возрастает, а другая
y = g(x) убывает на промежутке X, то
уравнение $f(x)=g(x)$ имеет не более одного
корня на промежутке Х. Если корень имеется,
то его можно угадать. В нашем случае
ϕ ункция $y = \log_2 x$
возрастает при $x>0$, а функция $y = 3 - x$
убывает при всех значениях х, в том числе и
при x>0, значит, уравнение имеет не более
одного корня. Заметим, что при
х = 2 уравнение обращается в верное
равенство.
Ответ: 2