Практическая работа № 6 Перевод чисел в разные системы счисления.

Цель: закрепить навыки перевода чисел в различные системы счисления математическим и автоматизированным способом.

Обеспечение занятия: конспект лекций, задание на урок, методические указания по выполнению практической работы.

Порядок выполнения

1. Повторить теоретический материал.

Системы счисления — это совокупность математических правил представления чисел с использованием соответствующих правил действия над числами. Рассмотрим позиционные системы счисления, в которых каждая цифра в числе записывается в определенной фиксированной позиции, означающей порядок основания этой системы счисления. Для десятичной системы счисления основанием является число 10, а позиция цифры от 0 до 9 в числе задает количество единиц (порядок позиции равен 0, то есть 10 в степени 0), десятков (10 в степени 1) и так далее. Для дробной части после запятой порядок имеет отрицательное значение, например 10 в степени —1 означает десятые доли числа и так далее.

Используем возможность перевода чисел из одной позиционной системы счисления в другие и выполнения арифметических операций над числами:

- математический (с помощью определенных математических правил, позволяющих провести вычисления в том числе вручную);
- автоматизированный (с помощью специальной компьютерной программы, позволяющей провести расчет, выбрав основание систем счисления для расчета, и далее, введя число в выбранной системе счисления получить ответ в другой системе счисления, заданной вами в программе).

Стандартная программа **Калькулятор,** представленная на рис. 2.7, в режиме **Программист** позволяет производить вычисления в разных системах счисления: **Bin** — двоичной, **Oct** — восьмеричной, **Dec** — десятичной и **Hex** — шестнадцатеричной. В режиме **Программист** используются только целые числа, десятичные части отбрасываются.

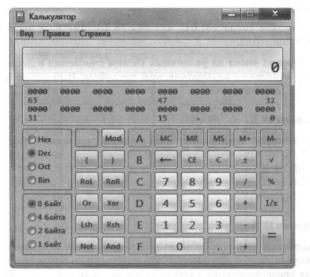


Рис. 2.7. Окно стандартной программы Калькулятор в режиме Программист

Контрольные вопросы:

- 1. Запишите правило перевода чисел в десятичную с.с.
- 2. Запишите правило перевода чисел из десятичной с.с.
- 3. Что такое основание?

2. Выполните задания

Переведите математическим способом

```
3aдание № 1. Переведите в 10-тичную с.с.: 1101_2 = 157_8 = A6F_{16} = 11101000_2 = 75013_8 =
```

Задание № 2.. Переведите из 10-тичной с.с. в различные с.с.

 $735_{10}=A_4$ $1235_{10}=A_5$ $2564_{10}=A_{16}$ $938_{10}=A_7$

Задание № 3.

Какое из чисел 110011_2 , 111_4 , 35_8 и $1B_{16}$ является: а) наибольшим; б) наименьшим?

Задание № 4.

Заполните таблицу, в каждой строке которой одно и тоже целое число должно быть записано в различных с.с.

Двоичная	Восьмеричная	Десятичная	Шестнадцатеричная
101010			
	127		
		269	
			9B

Перевести число из двоичной системы в восьмеричную без калькулятора можно тремя способами.

Способ 1:

Перевести сначала в десятичную систему счисления, затем из нее в конечную.

Способ 2:

Для перевода в восьмеричную систему нужно разбить двоичное число на группы по 3 цифры справа налево. В последней (самой левой) группе вместо недостающих цифр поставить слева нули. Для каждой полученной группы произвести умножение каждого разряда на 2^n , где n - номер разряда.

```
1101_2 = (001) (101) = (0*2^2 + 0*2^1 + 1*2^0) (1*2^2 + 0*2^1 + 1*2^0) = (0+0+1) (4+0+1) = (1) (5) = 15_8 Cnoco6 3:
```

Так же как и в первом способе разбиваем число на группы. Но вместо преобразований в скобках просто заменим полученные группы (триады) на соответствующие цифры восьмеричной системы, используя таблицу триад:

Триада	000	001	010	011	100	101	110	111
Цифра	0	1	2	3	4	5	6	7

 $10111010_2 = (010) (111) (010) = 272_8$

Преобразовать число из двоичной системы счисления в шестнадцатеричную можно тремя способами.

Способ 1:

Перевести сначала в десятичную систему счисления, затем из нее в конечную.

Способ 2:

Разбиваем число на группы по 4 цифры справа налево. Последнюю (левую) группу дополним при необходимости ведущими нулями. Внутри каждой полученной группы произведем умножение каждой цифры на 2°, где n - номер разряда, начиная с 0. Затем сложим результаты.

$$11010_2 = (0001) (1010) = (0*2^3 + 0*2^2 + 0*2^1 + 1*2^0) (1*2^3 + 0*2^2 + 1*2^1 + 0*2^0) = (0+0+0+1) (8+0+2+0) = (1) (10) = 1A_{16}$$

Chocob 3:

Также как и в первом способе разбиваем число на группы по 4 цифры. Заменим полученные группы (тетрады) на соответствующие цифры шестнадцатеричной системы, используя таблицу тетрад:

Тет рад а	0 0 0	0 0 0 1	0 0 1 0	0 0 1 1	0 1 0 0	0 1 0 1	0 1 1 0	0 1 1 1	1 0 0 0	1 0 0 1	1 0 1 0	1 0 1 1	1 1 0 0	1 1 0 1	1 1 1 0	1 1 1 1
Ци фр а	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F

 $1011111100_2 = (0001) (0111) (1100) = 17C_{16}$

Из восьмиричной в шестнадцатиричную

Пример:

 $123_8 = 53_{16}$

Решение

Сначала переведем число в десятичную систему счисления:

Каждый разряд исходного числа умножим на его основание в степени n, где n — номер разряда, при этом 0 — самый младший целый разряд. Для дробных разрядов n - отрицательный. Сложим полученные значения.

$$123_8 = (1 \times 8^2) + (2 \times 8^1) + (3 \times 8^0) = 64 + 16 + 3 = 83_{10}$$

Затем переведем из десятичной системы в конечную:

Делим исходное число на основание искомого числа и записываем остаток до тех пор, пока неполное частное не будет равно нулю. Полученные остатки записываем в обратном порядке.

Деление	Целое частное	Остаток
83 / 16	5	3
5 / 16	0	5

 $83_{10} = 53_{16}$

Из шестнадцатиричной в двоичную

Пример:

$586_{16} = 10110000110_2$

Решение

Сначала переведем число в десятичную систему счисления:

Каждый разряд исходного числа умножим на его основание в степени n, где n — номер разряда, при этом 0 — самый младший целый разряд. Для дробных разрядов n - отрицательный. Сложим полученные значения.

$$586_{16} = (5 \times 16^2) + (8 \times 16^1) + (6 \times 16^0) = 1280 + 128 + 6 = 1414_{10}$$

Затем переведем из десятичной системы в конечную:

Делим исходное число на основание искомого числа и записываем остаток до тех пор, пока неполное частное не будет равно нулю. Полученные остатки записываем в обратном порядке.

Деление	Целое частное	Остаток
1414 / 2	707	0
707 / 2	353	1
353 / 2	176	1
176 / 2	88	0
88 / 2	44	0
44 / 2	22	0
22 / 2	11	0
11/2	5	1
5/2	2	1
2/2	1	0
1/2	0	1

 $1414_{10} = 10110000110_2$

Переведите автоматизированным способом

Пример 1.

Перевести двоичное число 1111101_2 в десятичную систему счисления автоматизированным способом.

Решение.

Необходимо выполнить следующие действия:

- установить калькулятор в режим **Программист** и щелкнуть по переключателю **Bin** (**Binary** двоичная);
- ввести двоичное число 1111101₂;
- установить переключатель в положении **Dec** (**Decimal** десятичная) и в результате получится соответствующее десятичное число 125.

Выполните задания № 1 — 4, используя программу **Калькулятор,** и проверьте свои результаты.

Задание №5

Выполните задание, заполнив таблицу и заменив X числом в указанной системе счисления.

Исходное	Соответствующее	Исходное	Соответствующее
число	число	число	число
10112	X_{10}	11000112	X_8
			X ₁₀
			X_{16}
6758	X_{10}	74718	X_2
			X_{10}
			X ₁₆
41510	X ₁₆	41ADF ₁₆	X_2
			X_8
			X_{10}
8710	X_2	BA35 ₁₆	X_2
			X_8
	X_8		
	X_{16}		X_{10}

Выполнение арифметических операций над числами в различных системах счисления автоматизированным способом.

Пример 2.

Умножение восьмеричных чисел 748 и 68 автоматизированным способом.

Решение. Здесь необходимо выполнить следующие действия:

- установить калькулятор в режим **Программист** и щелкнуть по переключателю **Oct** (**Oct** восьмеричная);
- ввести восьмеричное число 748
- нажать на калькуляторе кнопку |*|

- ввести второе восьмеричное число 68
- нажать на калькуляторе кнопку=
- в результате получим восьмеричное число 5508.

Задание № 6

Имеются прейскуранты стоимости строительных и отделочных работ, приведенные в табл. Данные представлены в разных системах счисления.

Прейскуранты стоимости работ

Конструкция	Прейскурант 1	Прейскурант 2	Прейскурант 3		
	Сто	имость, р.			
Полы	Паркетная доска — 2A80 ₁₆	Ковролин — 6 736 ₈	Керамическая плитка — 2 346 ₁₄		
Стены	Стеклянная смальта — 23 420 ₈	Декоративный камень — 5 436 ₇	Краска, обои — 1 650 ₁₀		
Потолки	Краска - 23 3005	Потолочная плитка — 173ц	Навесной потолок — 109A ₁₆		

Определите материалы для пола, стен и потолка, которые будут использованы при ремонте квартиры, если сумма строительных и отделочных работ составляет 25 130_{10} р.

Сделайте выводы

Какая была цель на урок? Какие навыки отрабатывали? Что вы усвоили?