тема урока: Представление о различных системах счисления

Вопросы:

- Числа и системы счисления
- Римская с.с.
- Недостатки непозиционных с.с.
- Основание с.с.
- Алгоритм перевода чисел из позиционной с.с. с основанием n в десятичную с.с.
- Алгоритм перевода чисел из 10-тичной с.с. в систему с основанием n.

ЧИСЛА И СИСТЕМЫ СЧИСЛЕНИЯ

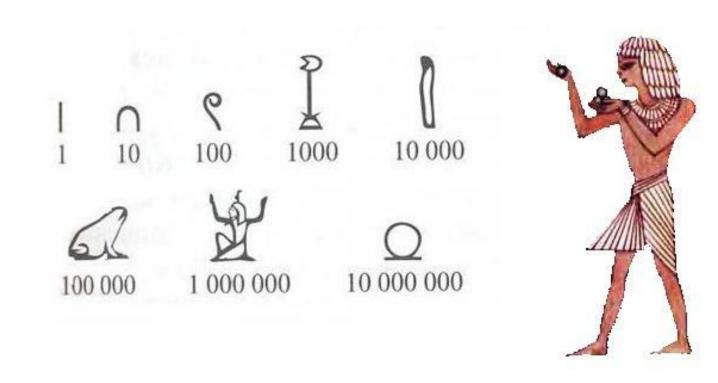
Система счисления — это способ представления чисел и правила действий над ними

Непозиционная


От положения знака в изображении числа не зависит величина которую он обозначает *Например:* XVIII век

Позиционная

Величина, обозначаемая цифрой, в записи числа зависит от ее положения *(позиции)* в числе *Например:* 555, 128


НЕПОЗИЦИОННЫЕ СИСТЕМЫ СЧИСЛЕНИЯ

• Греческая система счисления, также известная как ионийская

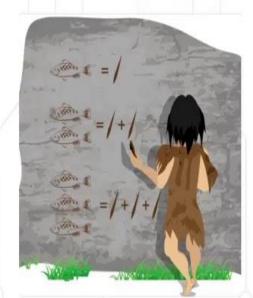
НЕПОЗИЦИОННЫЕ СИСТЕМЫ СЧИСЛЕНИЯ

• древнеегипетская десятичная непозиционная система счисления

Непозиционные системы счисления

Римская система счисления

 В обозначении цифр используются латинские буквы


I V X L C D M
1 5 10 50 100 500 1000

НЕДОСТАТКИ непозиционных систем счисления

- 1. Существует постоянная потребность введения новых знаков для записи больших чисел.
- 2. Невозможно представлять дробные и отрицательные числа.
- 3. Сложно выполнять арифметические операции, так как не существует алгоритмов их выполнения.

Позиционные системы счисления

Система счисления, применяемая в современной математике, является позиционной десятичной системой

2.1.0 555

По правилам этой системы счисления символы располагаются, начиная с нулевой позиции и далее по возрастающей слева направо. Символ 1 в нулевой позиции — это единица, а в первой позиции — это уже 10 единиц.

ПОЗИЦИОННЫЕ СИСТЕМЫ СЧИСЛЕНИЯ

Количество используемых цифр для обозначения числа называют основанием системы счисления

Основание системы, к которой относится число, обозначается подстрочным индексом к этому числу

101101₂, 3671₈, 3B8F₁₆

Позиционные системы счисления

Позиционная система счисления	Используемые символы
Двоичная	0 и 1
Троичная	0, 1, 2
Восьмеричная	от 0 до 7
Десятичная	от 0 до 9
16-ричная	от 0 до 9, А, В, С, D, Е, F
	10, 11, 12, 13, 14, 15

Определить наименьшее основание с.с.

- 378_n, n=
- 341_n, n=
- 652_n, n=
- 741_n, n=
- 231_n, n=

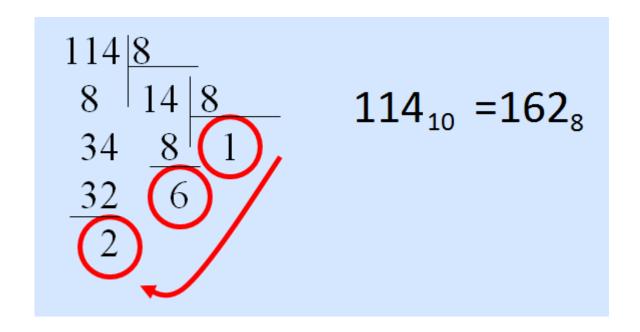
Алгоритм перевода чисел в десятичную с.с.

- 1. Пронумеровать разряды числа справа налево
- 2. Записать сумму произведений составляющих его цифр на соответствующие степени основания системы счисления

$$555_{n} = 5 \times n^{2} + 5 \times n^{1} + 5 \times n^{0}$$

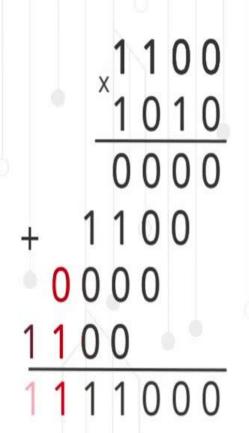
$$162 = 1 \times 8^{2} + 6 \times 8^{1} + 2 \times 8^{0} = 114_{10}$$

Переведите в 10-тичную с.с.


- 122₅=
- 10011₂=
- 132₄=

Алгоритм перевода чисел из десятичной с. с.

- 1. Последовательно выполнять деление исходного десятичного числа на основание системы п до тех пор пока не получится частное меньше делителя
- 2. Записать полученные остатки справа налево


Пример:

Перевод чисел из десятичной системы счисления в восьмеричную.

Перевести число

- 138₁₀ в двоичную с.с.
- 863₁₀ в 9-ричную с.с.
- 978₁₀ в 16-ричную с.с.

Итог:

- Назовите виды систем счисления. Чем они отличаются?
- Почему мы не пользуемся непозиционными с.с.?
- Что такое основание системы?
- Какие знаки входят в 6-ричную с.с.?
- В какой с.с. записано число 683?

Представление целых чисел в памяти компьютера

Тебе известно, что компьютер работает только с двоичным кодом. 0 и 1 обозначают два устойчивых состояния: вкл/выкл, есть ток/нет тока и т. д. Оперативная память представляет собой контейнер, который состоит из ячеек. В каждой ячейке хранится одно из возможных состояний: 0 или 1. Одна ячейка — 1 бит информации или представляет собой разряд некоторого числа.

Целые числа в памяти компьютера хранятся в формате с фиксированной запятой. Такие числа могут храниться в 8, 16, 32, 64-разрядном формате.

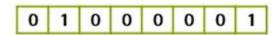
Для целых неотрицательных чисел в памяти компьютера выделяется 8 ячеек (бит) памяти. Минимальное число для такого формата: 00000000. Максимальное: 11111111. Переведём двоичный код в десятичную систему счисления и узнаем самое большое число, которое можно сохранить в восьмибитном формате.

$$1 \times 2^7 + 1 \times 2^6 + 1 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 255_{10}.$$

Если целое неотрицательное число больше 255, то оно будет храниться в 16-разрядном формате и занимать 2 байта памяти, то есть 16 бит.

Подумай! Какое самое большое число можно записать в 16-разрядном формате?

Чем больше ячеек памяти отводится под хранение числа, тем больше диапазон значений.


В таблице указаны диапазоны значений для 8, 16 и 32-разрядных форматов.

Количество разрядов	8	16	32
Минимум (без знака)	0	0	0
Максимум (без знака)	255	65 535	4 294 967 295
Минимум (со знаком)	- 128	- 32 768	- 2 147 483 648
Максимум (со знаком)	127	32 767	2 147 483 647


Для n-разрядного представления диапазон чисел можно вычислить следующим образом: от 0 до 2^n-1 .

Запишем целое беззнаковое число 65 в восьмиразрядном представлении. Достаточно перевести это число в двоичный код.

$$65_{10} = 1000001_2.$$

Оставшиеся пустыми слева ячейки заполняем нулями. Это же число можно записать и в 16-разрядном формате.

Для целых чисел со знаком в памяти отводится $\frac{2}{5}$ байта информации ($\frac{16}{5}$ бит). Старший разряд отводится под знак: $\frac{1}{5}$ — положительное число; $\frac{1}{5}$ — отрицательное число. Такое представление числа называется прямым кодом.

Представим число 65 в знаковом формате.

Знак	Число														
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1

Для хранения отрицательных чисел используют дополнительный и обратный коды, которые упрощают работу процессора.

Представление вещественных чисел в памяти компьютера

Положительное число, записанное в стандартной форме, имеет вид

$$m \cdot 10^n$$

Число m является <u>натуральным числом</u> или <u>десятичной дробью</u>, удовлетворяет неравенству

$$1 \le m < 10$$

и называется мантиссой числа, записанного в стандартной форме.

Число n является <u>целым числом (положительным, отрицательным или нулем)</u> и называется **порядком числа,** записанного в стандартной форме.

Например, число 3251 в стандартной форме записывается так:

$$3,251\cdot10^{3}$$

Здесь число 3,251 является мантиссой, а число 3 является порядком.

Вещественные числа хранятся в памяти компьютера в формате с плавающей запятой.

Любое вещественное число можно представить в экспоненциальной форме: $A=\pm m\cdot q^n$, где m — мантисса числа;

q — основание системы счисления;

n — порядок числа.

Рассмотрим, как может быть представлено число 587000000 в экспоненциальной форме.

 $5870000000 = 5,87 \times 10^{8};$ $5870000000 = 58,7 \times 10^{7};$ $5870000000 = 587,0 \times 10^{6};$

5.87E + 8 — с таким форматом можно встретиться, работая с калькулятором. E обозначает «умножить на 10 в степени».

Числа в формате с плавающей запятой занимают $\frac{4}{4}$ или $\frac{8}{5}$ байт. $\frac{31}{4}$ -й и $\frac{23}{5}$ -й разряды отводятся под знаки порядка и мантиссы.

Пример

Диапазон представления чисел в формате с плавающей запятой определяется количеством разрядов.

Кодовые таблицы

Известно, что числа в ЭВМ представляются в двоичной форме, в виде набора нулей и единиц. Для этого разработаны специальные приемы перевода числовых значений в двоичную последовательность. А как же компьютером обрабатываются текстовая информация — предложение, слова и буквы? Точно также как и числа — в виде последовательности нулей и единиц. Для представления буквы в компьютере ее заменяют числовым эквивалентом, а затем переводят в двоичный код. Каждой букве соответствует своя цифра. Все буквы с их числовыми эквивалентами сведены в кодовую таблицу символов, которая может называться ASCII, Unicode, КОИ-7, КОИ-8, Windows-1251.

Таблица ASCII (American Standart Code for Information Interchange) Самой первой системой кодирования текстовой информации была ASCII (американский стандартный код для обмена информацией). Таблица ASCII была разработана в США в шестидесятые годы прошлого столетия. Появление такой единой унифицированной системы кодировки символов было продиктовано необходимостью реализации компьютерного взаимодействия и обмена информацией. В то время каждый производитель вычислительной техники самостоятельно представлял буквы, цифры и управляющие коды. Только специалистами корпорации IBM применялись девять различных наборов кодировки символов.

- 4	Α	В	C	D	E	F	G	H B	1	J	K	L	M	N
1	Код	Символ	Код	Символ	Код	Символ	Код	Символ	Код	Символ	Код	Символ	Код	Символ
2	32		68	D	104	h	140	њ	176	• • >	212	Ф	248	ш
3	33	!	69	E	105	i	141	Ŕ	177	土	213	X	249	щ
4	34	Ent.	70	E	106	j	142	ъ	178	I	214	Ц	250	ъ
5	35	#	71	G	107	k	143	Ų	179	i	215	ч	251	ы
6	36	\$	72	H	108	- I	144	ħ	180	ď	216	ш	252	ь
7	37	%	73	I	109	m	145		181	ш	217	Щ	253	Э
8	38	84	74	a lon	110	n	146	983	182	П	218	ъ	254	ю
9	39		75	K	111	0	147	10	183	***	219	Ы	255	Я
10	40	(76	L	112	р	148		184	ë	220	ь		
11	41)	77	M	113	q	149		185	Nº	221	Э	ii i	
12	42	*	78	N	114	r	150	e n - 20 d	186	€	222	Ю	10	
13	43	+ "	79	0	115	S	151	10 s a_ 10 j	187	20-	223	Я		
14	44	586	80	P	116	t	152		188	j	224	а	90	
15	45	- H	81	Q	117	u	153	TM	189	S	225	6	i i	
16	46	×	82	R	118	v	154	љ	190	S	226	В		
17	47	1	83	S	119	w	155	00,00	191	Ϋ́	227	г		967
18	48	0	84	Tou	120	×	156	њ	192	A	228	д		
19	49	1	85	U	121	У	157	Ŕ	193	Б	229	e	***	
20	50	2	86	V	122	z	158	ħ	194	В	230	ж		
21	51	3	87	W	123	- {	159	Ų	195	Г	231	3		
22	52	4	88	×	124	1	160	0000	196	Д	232	и	10	
23	53	5	89	Y	125	}	161	ў	197	E	233	й	W	
24	54	6	90	Z	126	~	162	ÿ	198	ж	234	к	90/11	
25	55	7	91	1	127	0	163	J	199	3	235	л	î î	
26	56	8	92	- V- m	128	ъ	164	п	200	И	236	M		
27	57	9	93	1	129	ŕ	165	9 6 LP 3	201	Й	237	н	1	9 6
28	58		94	0 000	130		166	-	202	K	238	0		- 01
29	59	9	95	_ :	131	ŕ	167	5	203	Л	239	п	00	
30	60	<	96	-	132	28	168	Ë	204	M	240	р		
31	61	= 1	97	a	133	- 89	169	0	205	Н	241	c		
32	62	>	98	ь	134	+	170	€	206	0	242	T	1.0	-
33	63	?	99	0 c	135	‡	171	oc	207	П	243	у		
34	64	@	100	d	136	€	172		208	P	244	ф	4	
35	65	A	101	e	137	%。	173		209	С	245	x	35 -	
36	66	В	102	f _{in spile}	138	љ	174	®	210	Т	246	ц		
37	67	C	103	- The second second	139		175	Ĭ	211	У	247	ч ч		
38			103	g	135		113	- 1	211		241	-		

Идея создания единой стандартизированной системы кодирования символов в виде числовых эквивалентов принадлежит американскому специалисту в области информационных технологий Роберту Уильяму Бемеру. Это он придумал экранирующий символ «Esc», обозначающий то, что следующий после него символ, имеет некоторое другое значение, не такое как ему назначено в таблице ASCII.

Первоначально таблица использовалась для кодировки только 128 знаков, затем была расширена до 256 символов. Первые тридцать два символа в таблице ASCI не имеют печатных эквивалентов и используются для управления. Числа в диапазоне 32 –127 предназначены для кодирования прописных и строчных латинских букв, цифр и знаков препинания.

Знак пробела имеет код 32 и также является печатным символом. Проверить соответствие символа печатному коду легко. Для этого можно воспользоваться простейшим текстовым редактором Блокнот в группе программ Стандартные операционной системы Windows. Нажав одновременно функциональную клавишу Alt и введя код символа – десятичное число, в окне редактора на месте расположения курсора будет напечатан соответствующий символ.

Национальные версии таблицы ASCII

Таблица ASCII в интервале символов от 0 до 127 остается неизменной для любых программ. Диапазон кодовых значений от 128 до 255 может варьироваться в зависимости от языковых и национальных особенностей.

Существуют различные национальные варианты системы кодирования. Для кодирования букв русского алфавита используются:

- •IBM cp866 для MS DOS
- •Win-1251 для WINDOWS
- •KOI8 для UNIX

Unicode

Unicode представляет собой промышленный стандарт для кодирования символов всех письменных языков мира. Он был предложен в 1991 году некоммерческой организацией Unicode Consortium.

Кодовое пространство Unicode разделено на несколько областей. Диапазон кодовых значений от 0 до 127 полностью дублирует кодовую систему ASCII. Затем располагаются области знаков разных языков, пунктуационные знаки и некоторые технические символы.

Unicode имеет несколько форм представления: UTF-8, UTF-16 и UTF-32.

Закрепление

С каким минимальным основанием возможна запись чисел:

- a) **542** _n n=?
- б) **725** _n n=?
- в) **11001_n n=?**

Переведите числа из позиционной системы счисления в десятичную:

Переведите из десятичной системы счисления в двоичную:

Задание № 4 *

Запишите свою дату рождения (число, месяц), переведите полученное число в троичную с.с.

$$????_{10} = A_3$$

Полученный ответ перевести в 10 с.с.

Пройти тест на платформе ЯКласс — Информатика — 8 класс — Урок I-2